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4 Consecutive follow-up intervals

4.1 A sequence of binary models

The lifetable as a sequence of Bernoulli models: Efron (1977) was one of the
early authors to point out that the likelihood contribution of a subject, fol-
lowed for t units of time, is equivalent to the likelihood for a sequence of a
large number, n = t/∆, of Bernoulli trials, with time-dependent probabilities
of failure. For a trial that corresponds to the small interval (t, t+ ∆), the fail-
ure probability can be well approximated by p = h(t)∆, where h(t) is called
the hazard function (see later). The sequence ends with the nth trial, at the
time of the event of interest or when follow-up was otherwise terminated. In a
subsequent article Efron (1988) focused on discretizations of the t-axis and on
using logistic regression to fit various smooth-in-t hazard and survival func-
tions in the one-sample situation, where the usual non-parametric alternative
is the Kaplan-Meier estimator of survival rate.

The probabilities of surviving one, two, and three years without failing are
called the cumulative survival probabilities for the cohort: JH continues to
argue that the word cumulative is misleading. The complement of the (uncon-
ditional) survival probability is the cumulative incidence. It is an increasing
function. Would we call a declining fraction, obtained as a product of more
and more fractions, a cumulative fraction?

4.2 Estimating the conditional probabilities of failure

The subjects who contribute to the estimation of the conditional
probabilities do not have to have been followed from the beginning.
One can splice together estimates based on separate samples. This
is what is done to create current lifetables. And in any case, when (a
subset of) those who “survive” a specific time band are used again in the next
band, the estimates are treated as independent of each other – just as if they
were from different persons. In current lifetables, they are different persons!

Table 17.1 in p. 570 of the Survival Analysis chapter (17) of the 4th edition
of Statistical Methods in Medical Research by Armitage, Berry & Matthews,
illustrates the difference between ‘current’ (aka ‘period’) and ‘cohort’ lifeta-
bles.

The entire ‘current’ lifetable is calculated, as a product of conditional proba-
bilities, using the observed age-specific mortality rates in England and Wales
in 1930-1932. In this sense it is fictitious, since those who computed the table

in the 1930’s didn’t know for sure that the world would even exist in 2010,
when those remaining from the fictional 1000 who started out at age 0 would
reach their 80th birthday. And even if they did, they could not have antici-
pated exactly what force of mortality these 80-year olds would face in 2010,
even though they might have foreseen that mortality rates would improve over
time. The force of mortality these 80-year olds would face in 2010 is a good
deal lower than the force of mortality the 80-year olds actually faces in 1930-
32. For example, the death rate in the male 75-79 age category in Denmark
was 9.4/100MY in 1930-34 and 4.2/100MY in 2000-04.

“The cohort life-table describes the actual survival experience of a
group, a ’cohort’ of individuals born at about the same time. Those
born in 1900, for instance, are subject during their first year to the
mortality under 1 year of age prevailing in 1900-1; if they survive
to 10 years of age they are subject to the mortality at that age in
1910-11; and so on. Cohort life-tables summarize the mortality at
different ages at the times when the cohort would have been at these
ages. The right-hand side of Table 17.1 summarizes the lx column
from the cohort life-table for men in England and Wales born in the
5 years centred around 1931. As would be expected. the values of
l1 in the two life-tables are very similar, being dependent on infant
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mortality in about the same calendar years At higher ages the values
of l are greater for the cohort table because this is based on mortality
rates at the higher ages which were experienced since 1932.”

For a further illustration of the difference between ‘current’ and ‘cohort’ life
tables, see the Bridge of Life applets (accessible via link at bottom left of JH’s
homepage). In particular, see the contrast between France, 1895 (current) and
France, 1895-2004 (cohort).

This exercise makes it clear that, in the analysis of such studies, the basic
atom of data is not the subject, but the observation of one subject through
one time band. [ last para of section 4.2]

This is a very important statement, and this ‘outlook’ or ‘attitude’ is key to
a full understanding of rates, and or person-time. It says that one’s ‘timeline’
is divisible. Think of the experience as an infinite sequence of Bernoulli trials
that is terminated by the event, or when observation is terminated (i.e., before
the event could occur).

It also allows the experience to be further sub-divided into ‘exposed’ person
time bands and ‘unexposed’ person time bands: c.f. of the ‘clicks’ of time a
driver spends on the cell-phone and off-the-cell-phone.

In the example, the event of interest is a one-time event, and so, unlike the
cat with nine lives, once the event occurs, it terminates the observation: one
is no longer ‘at risk.’ But one can also think of events, such as repeated events
such as accidents, or sickness episodes, experienced by the same person.

4.3 A cohort life table

These [survival] plots are useful for studying whether the probability of failure
is changing with follow-up time, and for calculating survival probabilities for
different periods of time. In fact, it is not that easy to check if the probability
of failure is changing from survival curves. The probability of failure the
authors write of is a conditional, i.e. time-specific, probability, and so the
hazard function, which uses as a denominator the numbers of persons at risk
at that time, makes it easier to monitor this probability.

4.4 The use of exact times of failure and censoring

“[...] choosing the bands so short that each failure occupies a band by itself.”
This is the same assumption that allows us to derive the Poisson distribution

as a limiting case of the Binomial distribution, and the link between the
Poisson distribution and the exponential distribution of inter-event times.

“This method of estimating the cumulative survival probabilities is called the
Kaplan-Meier method” It is also called the product-limit method, since it is
derived by slicing time into smaller and smaller bands, and not having to be
materially concerned about where within the band an observation becomes
censored. In the JUPITER trial example JH is using in the EPIB-634 course,
the follow-up ranges from just over a year to almost 5 years, or approximately
400 to 1600 days. The 200+ events in the placebo arm, and the 100+ in the
treatment arm, are distributed over these 1600 days. If we use one day as the
width of each band, and estimate S(1000), the 1000-day “event-free survival”
then this estimate is a product of 1000 estimated conditional probabilities,
many of them estimated at unity. So the changes in the product take place
only at the days in which there were events. See also the COMPARE trial.

The persons at risk just before the event on a particular day (including the
person(s) who did suffer the event that day) are called the riskset. They are
the candidates for the event.

Supplementary Exercise 4.1 Consider again the tumbler longevity data
that we saw in an earlier exercise. The smallest unit of time (‘granularity’)
is 1 week. Even though some observations (< 10%) are right-censored, Table
1 in the paper lists the data in a form that allows direct calculation of
an empirical complement-of-the-cdf by ‘coarse-products’ rather than exact
product-limits. Graphically compare the results obtained with this (non-
parametric) estimator of the ‘the survival’ function with the results obtained
with the (parametric) gamma model fitted by the authors. Compare also the
mean longevity estimated by calculating the area under the non-parametric
survival curve with that obtained from the values of the 2 fitted parameters
of the author’s model.

4.4.1 Ŝ(t)KM : a Non-parametric Maximum-Likelihood Estimator
(NPMLE) of S(t)

As is rigorously justified in their 1958 paper, the Kaplan-Meier estimator is a
non-parametric ML estimator within the class of all possible S(t) functions.

Supplementary Exercise 4.2 Take a small survival dataset with just 3 ob-
servations, 1 censored and 2 not, such as the 3 values 5, 7+ and 10. Show that
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Ŝ(t)KM Interval Point (t) Prob. Mass at Point

1 t < 5
t = 5 1/3

2/3 5 ≤ t < 10
t = 10 2/3

0 t ≥ 10.

maximizes the Likelihood, ie the probability of the observed data as a function

of S(t), i.e., that no other Ŝ(t) can yiled a larger likelihood.

4.4.2 Ŝ(t)KM as a ‘self-consistent’ and as a Distribute mass to the
right’ estimator of S(t)

The K-M estimator, based on n observations T1, . . . , Tn, some censored, some
not, can also be seen as obeying the self-consistent estimating equation:

S(t) =
1

n

{∑
all

I[Ti > t] +
∑

censored < t

S(t)

S(Ti)

}

Observations known to exceed t [even if censored after t]are counted as sur-
vivors (1’s) while observations for which we don’t know if they will exceed
t are counted as fractions or probabilities: those which are already close to
reaching t are given higher chances of eventually exceeding it, those which
are further to the left of t are given lower chances of doing so: the chance of
eventually exceeding t, given that one has already reached a value T < t, is
S(t)/S(T ).

The K-M estimator can also be seen as a distribute to the right procedure:
Initially, each of the n observations is given a mass of 1/n. Then, the mass
given to the leftmost censored observation is redistributed (equally) to all
observations to the right of it, and that leftmost observation is removed. The
process is repeated until all censored observations are removed, and all of their
mass has been redistributed.16. The procedure will remind some of the EM
algorithm.

Supplementary Exercise 4.3 Take a simple survival dataset with just 5
observations, 2 censored and 3 not, such as the 5 values 2, 5+, 6, 7+ and 9.
Derive the K-M estimate of S(t). Illustrate the ‘self-consistency’ of the KM

16Google “Efron distribute to the right Kaplan Meier”

estimator, and that the ‘distribution to the right’ procedure produces the KM
estimate.

Supplementary Exercise 4.4 The self-consistent property can also be used
with more complicated censoring, such as interval censoring and – as the most
extreme case – ‘current status’ data (e.g., the avalanche dataset) where each
observation is either left-censored (dead when extracted) or right-censored
(alive when extracted)

EXERCISE : Consider a dataset with 10 observations: the true values have
no time element, but are (possibly repeated) prime numbers between 1 and
29 inclusive. 6 are left-censored (<10, <16, <18, <21, <26, <28) and 4 are
right-censored (>6, >10, >11, and >24.

Analytically, and separately by repeated (iterative) use of the ‘self-consistency’
principle, arrive at an estimate of S(t).

Hint : You may find the diagram produced by the supplied R code (see website)
helpful to visualize the data-intervals.

Start by choosing the support points (here integers) over which the total of
probability mass of 1 will be distributed. Try to have these integer values
[points of ‘support’] be as helpful as possible – include them in (and thus
make them contribute to the likelihood of) as many of the data-intervals as
possible. In this example, the minimal set of support points has size 3 (note
that the 3 points are not unique).

Analytically : write down the likelihood as a function of the magnitudes, θ1,
θ2, and θ3 = (1 − [θ1 + θ2]) of these ‘parameters.’ Then maximize this with
respect to θ1 and θ2, say.

Iteratively : Start by strategically selecting 3 probability masses {θ[0]1 , θ
[0]
2 ,

θ
[0]
3 } to distribute over the 3 selected support points. This distribution gives

you an initial estimate, S0(t), of the S(t) function. (Out of interest, calculate
the Likelihood associated with this S(t)).

Then use this S0(t) as the S(t) in the right hand side of the equation at the
beginning of section 4.4.2 to obtain a new estimate, S1(t) of the S(t) function.
(again, out of interest, calculate the Likelihood associated with this new S(t))

Repeat until the estimate of the S(t) function (and the Likelihood) no longer
changes.

EXERCISE : Use the supplied R code (or ‘roll your own’ code) to obtain a
NPMLE of the S(t) function in the case of the avalanche data.
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4.4.3 The Nelson-Aalen estimator of S(t)

Just as with K-M, divide the entire interval [0, t] into J narrow event-
containing sub-intervals; ignore the ‘non-event-containing’ sub-intervals. Sub-
interval j is defined by distinct event-time tj , with nj at risk just before the
event(s) [death(s)] in that interval. (there can be more than 1 event at the
same tj , particularly if time is measured coarsely). The (step-)function n(t) is
the number at risk at each time point in (0, t). ‘Riskset’j = the nj ‘candidates’
for the event(s) at tj . Suppose sj survive event-containing sub-interval j, and
that the remaining dj = nj − sj do not [the letter d is used here because in
many applications, the ‘transition’ (‘event’) is from the initial state of ‘alive’
to the destination state of ‘dead’, but transitions may be desirable or under-
irable.]

The Nelson-Aalen Estimator uses the same general formula that links the S(t)
and ID(t) or λ(t) functions:

ŜNA(t) = exp

{
−
∫ t

0

ID(u)du

}
= exp

{
−
∫ t

0

λ(u)du

}
= exp

{
−
∑ dj

nj

}

Think of a fitted ID function ID(t) with ÎD(t) = 0 in the non-event-

containing sub-intervals of (0, t) and ÎD(t) = d/PT = d/(n × δt) in each

event-containing interval of width δt; thus ÎD(t) = dj/(nj × δt) in event-
containing interval j.

Supplementary Exercise 4.5 (a) Using the ÎD(t) function just described,

evaluate the integral of
∫ t
0
ÎD(u)du and use it to obtain the Nelson-Aalen

estimator of S(t). (b) Derive the conditions under which the K-M estimator∏ sj
nj

=
∏
{1 − dj

nj
} gives a result that is very close to that of the Nelson-

Aalen estimator. (c) Assuming dj ∼ Poisson(nj × δt), derive an expression

for V ar[Ŝ(t)NA].

4.5 Examples of the Kaplan-Meier method

Example 1 Cf. JUPITER data on the website for course EPI634.

The R code calls the “canned” routines, but also derives the K-M-based cu-
mulative incidence curves ‘from scratch.’

Example 2 Figure 2 below is from the article: “Male circumcision for HIV
prevention in young men in Kisumu, Kenya: a randomised controlled trial”
(Lancet 2007; 369: 643-656). If interested, and if you don’t have direct access
to the Lancet site, the full article is also available under “resources for rates”
in course EPI634. There you will also find a companion article for a similar
randomized trial, with similar estimates of benefit, carried out in Uganda,
and published back to back with the one from Kenya.

Articles

www.thelancet.com   Vol 369   February 24, 2007 651

there were two HIV seroconversions in the circumcision 
group in the fi rst month after randomisation and another 
two between months 1 and 3.  Subsequent PCR testing 
indicated that all four were actually HIV positive at 
month 1; no individuals in the control group were 
seropositive by PCR at month 1. There were three 
confi rmed seroconversions in the control group between 
month 1 and month 3, and none in the circumcision 
group. Thus, there were seven early seroconverters 
(month 1 or month 3): four in the circumcision group 
and three in the control group. Three of the four in the 
circumcision group reported no sexual activity in the 
month after circumcision. We cannot exclude the 
possibility that any of these individuals were actually HIV 
positive at baseline, and that their infection was not 
detected. Two of the three early seroconverters in the 
control group also denied sexual activity in the period 
before seroconversion. An analysis excluding the four 
individuals confi rmed as being seropositive at baseline 
and the four additional early seroconverters positive at 
month 1 estimated 2-year HIV incidences to be 
1·6% (95% CI 0·8–2·4) for the circumcision group and 
4·1% (2·9–5·3) for the control group (p=0·0007). The RR 
was 0·32 (0·18–0·58), which corresponds to a 68% (42–82) 
protective eff ect of circumcision against HIV infection.

The as-treated analysis—which adjusted for individuals 
who did not adhere to the randomisation assign-
ment—estimated the RR of circumcision to be 0·45 (95% 
CI 0·27–0·76). Excluding the four participants who were 
confi rmed as being HIV positive at baseline, the RR of 
circumcision was 0·40 (0·23–0·68), which is equivalent to 
a 60% (32–77) protective eff ect of circumcision against 
HIV acquisition.

Treatment results within age strata (ages 18–20 
and 21–24 years) were consistent with the overall results 
and there were no signifi cant diff erences between the 
age-groups in the 2-year HIV incidence (p=0·51). For the 
participants who enrolled when they were 18–20 years of 
age, the 2-year HIV incidences were 2·5% (95% CI 
1·0–3·9) in the circumcision group and 4·3% (2·6–6·1) 
in the control group (p=0·12). For the 21–24-year-old 
group, the rates were 1·7% (0·6–2·8) in the circumcision 
group and 4·0% (2·4–5·7) in the control groups (p=0·02). 
The study was not powered to detect treatment diff erences 
within the two age-groups.

After adjustment for baseline variables for which there 
seemed to be diff erences between the two study groups at 
baseline, only infection with herpes simplex virus 2 at 
baseline was found to be associated with HIV incidence 
(RR 1·91, 95% CI 1·18–3·08). The treatment eff ect re-
mained strong with all adjustments that were considered, 
and the adjusted RR varied between 0·44 and 0·47.

Not all circumcised men adhered to the 30-day period of 
post-circumcision abstinence. 60 participants (4·5%) in 
the circumcision group reported having had sexual 
intercourse before 30 days post-circumcision, including 
one of the early seroconverters (month 1) noted above, and 

another whose HIV infection was detected at the month 6 
visit. Both of these participants had adhered to treatment.

All but one of the 1334 men who were circumcised 
returned for their 3-day postsurgical visit, and all but six 
returned after 8 days. All those employed had resumed 
working by the 3-day visit. Among all men circumcised, 
1287 (96%) reported having returned to normal activities 
by the 3-day visit, and all but one person had returned to 
normal activities by the 8-day visit. At the 3-day visit, 
643 (48%) reported no pain, 690 (52%) reported very 
mild pain, and none reported mild to severe pain. By the 
8-day visit, 1179 (89%) reported no pain, and 
148 (11%) reported very mild pain. Of the 1334 men 
circumcised, 1281 (96%) had a 30-day postsurgical 
wound examination. The wound was judged to be 
completely healed in all but 16 (1%) individuals. All had 
returned to normal general activities. All wounds were 
completely healed by the month 3 visit. 1274 (99·5%) 
individuals were “very satisfi ed” and six (0·5%) were 
“somewhat satisfi ed” with their circumcision; one 
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Estimated 2-year incidence (SE; 95% CI)
Circumcision: 2·1% (0·46; 1·2–3·0)
Control: 4·2% (0·61; 3·0–5·4)
Difference: Z=-2·720, p=0·0065

24

Follow-up visit (months)

Figure 2: Cumulative HIV seroincidence across follow-up visits by treatment
Time to HIV-positive status is taken as the fi rst visit when a positive HIV test result is noted. Time is credited as the 
follow-up visit month. Participants without HIV-positive status are censored at the last regular follow-up visit 
completed where HIV testing was done, credited specifi cally as months 1, 3, 6, 12, 18, and 24. 

Circumcision group Control group Total

0–6 months* 0·8% (0·3–1·3) 1·0% (0·4–1·5) 0·9% (0·5–1·2)

6–12 months† 0·2% (0·1–0·7) 1·4% (0·8–2·2) 0·8% (0·5–1·3)

12–18 months† 0·0% (0·0–0·5) 0·7% (0·3–1·5) 0·3% (0·1–0·7)

18–24 months† 1·0% (0·5–2·1) 1·2% (0·6–2·4) 1·1% (0·7–1·8)

0–24 months* 2·1% (1·2–3·0) 4·2% (3·0–5·4) 3·1% (2·4–3·9)

Data are % (95% CI). *Based on Kaplan-Meier methods. †Based on the number of 
new incidents of HIV infection detected for the interval divided by the number of 
participants at risk during the interval. 

Table 2:  Incidence rates for intervals of follow-up

Supplementary Exercise 4.6 Replicate the statistics reported in the insert
beginning with the text “Estimated 2-year incidence” in the top right portion
of the above Figure 2.

Example 3 The items below are from “Male circumcision for HIV prevention
in men in Rakai, Uganda: a randomised trial,” Lancet 2007; 369: 657-666.
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Articles

www.thelancet.com   Vol 369   February 24, 2007 661

To assess possible behavioural disinhibition, risk 
behaviours were tabulated by follow-up visit, and 
diff erences between study groups were assessed by χ² 
and Fisher exact tests. Symptoms of sexually transmitted 
diseases reported at each visit were cumulated over the 
24 months of follow-up to estimate the prevalence of 
symptoms per 100 visits in intervention and control 
participants. Prevalence risk ratios (PRR) were estimated 
with log-binomial regression with a robust variance 
adjustment to account for within-person correlation. We 
also examined possible associations between reported 
symptoms of sexually transmitted diseases and incident 
HIV infection, by use of subgroup-specifi c models to 
determine whether any eff ects of circumcision on HIV 
incidence might be mediated by symptomatic sexually 
transmitted disease cofactors.

The frequencies of adverse events both related and 
unrelated to study participation were assessed in both 
study groups. Multiple adverse events diagnosed at a 
single visit were counted as separate events despite the 
fact that they could have been causally related (eg, wound 
dehiscence and infection), to provide an estimate of the 
maximum frequency of adverse events without making 
assumptions about causality.

The study had 80% power to detect a rate ratio of 0·5 for 
incident HIV in the intervention group relative to the 
control group, with a projected total person-time of 
8993 person-years, assuming a 15% annual loss to 
follow-up and 10% crossover over 24 months. Formal 
statistical monitoring used the Lan-DeMets group 
sequential approach9 with an O’Brien-Fleming type α 
spending function10 to minimise the chance of in-
appropriate premature trial termination. Two interim 
analyses were done, the fi rst with a data cutoff  date of 
April 30, 2006, when about 43% of projected person-time 
had been accrued, and the second interim analysis with a 
data cutoff  date of Oct 31, 2006, when about 72% of 
projected person-time had been accrued. The second 
interim analysis showed a signifi cant diff erence 
in HIV inci dence between the two study groups 
(nominal α=0·0215); as a result, NIAID terminated the 
trial for effi  cacy on Dec 12, 2006. The analyses presented 
here are based on all data accrued up to the time of trial 
closure in December, 2006, and encompass about 73% of 
total anticipated person-time. Results were deemed to be 
statistically signifi cant at the α=0·05 level. All data were 
double entered. East was used for spending function 
calculations and Stata version 8 was used for analysis.

This trial is registered with ClinicalTrials.gov, with the 
number NCT00425984.

Role of the funding source
This trial was funded through a cooperative agreement 
with the Division of AIDS, NIAID/NIH. The study was 
done by the Rakai Health Sciences Program, a research 
collaboration between the Uganda Virus Research 
Institute, and researchers at Makerere University and 

Johns Hopkins University and Columbia University. 
FM, LHM, and MAC had full access to all the data until 
the trial closed. Thereafter, the principal investigator 
and co-investigators (RHG, GK, DS, MJW, FN, NKS, 
FWM, AND SJR) had access to all the data. Staff  at the 
Division of AIDS maintained oversight of progress and 
reporting, and participated in study conduct and data 
interpretation as members of the study executive 
committee. Data analyses was done by the research 
teams at John Hopkins University and the Rakai Health 
Sciences Program. The corresponding author had fi nal 
responsibility for preparing and submitting results for 
publication.

Intervention 
group

Control 
group

Incidence rate 
ratio (95% CI)

p value

0–6 months follow-up interval

Number of participants 2263 2319

Incident events 14 19

Person-years 1172·1 1206·7

Incidence per 100 person-years 1·19 1·58 0·76 (0·35–1·60) 0·439

6–12 months follow-up interval

Number of participants 2235 2229

Incident events 5 14

Person-years 1190·7 1176·3

Incidence per 100 person-years 0·42 1·19 0·35 (0·10–1·04) 0·0389

12–24 months follow-up interval

Number of participants 964 980

Incident events 3 12

Person-years 989·7 1008·7

Incidence per 100 person-years 0·30 1·19 0·25 (0·05–0·94) 0·0233

Total 0–24 months follow-up

Cumulative number of participants 2387 2430

Cumulative incident events 22 45

Cumulative person-years 3352·4 3391·8

Cumulative incidence per 100 person-years 0·66 1·33 0·49 (0·28–0·84) 0·0057

Table 3: HIV incidence by study group and follow-up interval, and cumulative HIV incidence over 2 years
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Figure 2: Kaplan-Meier cumulative probabilities of HIV detection by study 
group
Actual visits grouped by the three scheduled visits at 6 months, 12 months, and 
24 months after enrolment. The cumulative probabilities of HIV infection were 
1·1% in the intervention group and 2·6% in the control group over 24 months.

Supplementary Exercise 4.7 Comment on the appropriateness of (i) the
term “Cumulative incidence per 100 person-years” in the last row of Table 3
(ii) using a single incidence (hazard) rate ratio of 0.49 for the full 2 years, and
in the abstract, reporting that the estimated efficacy of intervention was 51%.

.
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5 Rates

5.1 The probability rate (hazard rate)

JH is not sure why the authors used the term probability rate, when the term
hazard rate17, or short-term incidence density, or even just rate, or instanta-
neous rate, would have done. The only virtue JH sees for this term is that
– unlike the term hazard rate – it is somewhat explanatory: the term does
indeed convey, and help you remember, the idea that it is the probability per
unit time. JH has seen many people struggle to remember and accurately re-
produce the definition of the hazard rate. The one item that is not conveyed
directly by any of these terms is the conditional nature of the probability: it
has as its denominator those people, or that person time experience lived by
those, who reached the “t” that marks the beginning of the small (infinitesi-
mal) interval.

Another way to think of it is as the limit, as the width of the time band is
shrunk to zero, of the incidence density (ID).

Since every realistic and epidemiologically interesting time interval has a non-
zero width, and since in any case we usually use the hazard rate as a smooth
function of time, the idea of it as an instantaneous rate is merely a mathe-
matical nicety. Indeed, we would immediately multiply this rate into some
amount of person time PT (which we can depict as a rectangle with height P
persons and width T time units) to get an expected number of events, or for
the individual, the conditional probability.18 The point is that if we were to
reverse the process from the expected number of events in a certain PT, the
ratio of no. of events to PT would remain the same as we shrunk the width
of this time slice, and the corresponding number of events. If it did not, it
would imply that the intensity is changing quickly over time, and that a single
average intensity (or the corresponding conditional probability) is misleading.

In fact, the force of human mortality is – after a certain age – a monotonically

17The Website jeff560.tripod.com/h.html “Earliest Known Uses of Some of the Words
of Mathematics” tells us: HAZARD RATE came into use in statistics in the 1960s as a
general term for what is called the force of mortality in demography and the intensity
function in extreme value theory. David (2001) finds “hazard rate” in R. E. Barlow; A. W.
Marshall & F. Proschan “Properties of Probability Distributions with Monotone Hazard
Rate,” Annals of Mathematical Statistics, 34, (1963), 375-389. A JSTOR search found
“death-hazard rate” in D. J. Davis “An Analysis of Some Failure Data,” Journal of the
American Statistical Association, 47, (1952), 113-150.

18Freedman, in his nice article, Survival Analysis: A Primer” in the American Statistician
in May 2008 (see resources for survival for course EPI634) puts it nicely: “The intuition
behind the formula is that h(t)dt represents the conditional probability of failing in the
interval (t, t+ dt), given survival until time t.”

increasing function of attained age (note the conditioning on attained age) but
practically speaking, the values of the hazard function at age 32.564 and at
32.565 (or indeed over the age range 32 to 33) are similar enough that we
can quite closely approximate this monotonically increasing hazard function
(force of mortality) in this age band as a constant, and over a larger age range
as piecewise constant within each 1-year age band. If we were concerned with
the shape of the hazard function after an attained age or 104, we might want
to make the time bands narrower. And at age 32, we might want to make
them a bit wider than 1 year: see the value of the q function in the 1-year
Canadian lifetables, where qis the conditional failure probability for age bands
1 year wide (h=1 in the terminology of section 5.3)

“The probability rate refers to an individual subject. This is counterintuitive
to many epidemiologists.”

This is also counterintuitive to JH, who doesn’t understand where these au-
thors are coming from on this. An incidence density is certainly not about
an individual person. How are we to think of a failure rate of 8 ruptures
per 10000-pipe-kilometer-years of operating pipeline of a water distribution
system?

The authors however do well to ask us to distinguish between the definition of
the parameter, and an estimate (or estimator) of the value of this parameter
in a particular context (e.g. the rupture rate when the temperature is in the
vicinity of -20C.

Mathematically, then, here are a few definitions of what they call the proba-
bility rate, or simply the instantaneous rate, at time t. Since it is a parameter,
we will, as they do, give it the Greek letter lambda, λ. With P the number
of persons at risk at t, or more realistically, the average number of persons at
risk over the entire interval (t, t+ δt),

λ(t) = lim
δt→0

Expected no. of events

P × δt

One can re-write this as

λ(t) = lim
δt→0

Expected no. of events

P
÷ δt

so that the Expected no. of events/Person is a probability. This probability,
when divided by δt becomes the (conditional) failure probability per unit time
that the authors use as their definition.

One will also see in survival analysis textbooks the definition of λ(t) or h(t)
as

h(t) = λ(t) = f(t)/S(t),
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where S(t) is the ‘survival’ function, i.e., 1 − F (t), and f(t) the probability
density function, of the ‘time to event’ random variable. This is no different
from the definition above, since we can write it as

h(t) = λ(t) =
f(t)δt

S(t)
÷ δt.

S(t) is the proportion of persons who are at risk (event-free) at time t, and
f(t)δt is the (unconditional) fraction of events that occur within the interval

(t, t+ δt), so f(t)δt
S(t) is itself a (conditional) fraction of a fraction.

Moreover, we can rewrite the definition as

h(t)dt = λ(t)dt =
−dS(t)

S(t)

and integrate both sides over the interval (0, T ) to get∫ T

o

h(t)dt =

∫ T

o

λ(t)dt =

∫ T

o

−dS(t)

S(t)
= − logS(T ).

Then, exponentiating both sides, we get the fundamental relationship between
the incidence density function (alias hazard function (h(t), or the maybe more
familiar term ‘failure rate function’, λ(t)) and the complement of cumulative
incidence (CI), namely

1− CI0→T = S(T ) = exp

[
−
∫ T

o

h(t)dt

]
= exp

[
−
∫ T

o

λ(t)dt

]
.

Notice also the (welcomed) use throughout the book of λ as an event rate,
and not – as some books use it – as the expected number of events, i.e. as the
mean parameter of a Poisson distribution. JH has tried to be consistent in
using the Greek letter µ for the expected number of events, since after all it is
the mean or expected value of the random variable, and since it is important
to keep the distinction between the numerator and denominator of an event
rate parameter.

5.2 Estimating the probability rate parameter

Notice the use of the word the, i.e., that the parameter value is assumed
constant in the follow-up period of interest.

5.3 The likelihood for a rate parameter

You might find it strange that the authors don’t go directly to the repre-
sentation of the observed rate as an observed Poisson numerator divided by
a known PT denominator. I think they did this to emphasize the idea of
subdividing the PT into person-clicks.

It is interesting that in 1907 Gosset (of Student-t fame) derived the Poisson
distribution ‘from scratch’ using this same conceptual subdivision of a plate
(or field in a microscope) into a large number of small squares, small enough
that only one yeast cell would fit in it (C&H in section 4.4 write of time bands
so narrow that “each failure occupies a band by itself”).19 If the mean number
of cells per plate was µ and the area of the plate was A, or N = A/a small
squares of area a each, then the probability π that a small square contains a
square is π = µ/N . The probability that the total area A will contain y yeast
cells is then

Pr(y occupied cells) = NCy π
y(1− π)N−y.

Gosset used Stirling’s approximation, and the definition of ex = exp[x]
as a limit, to go from this binomial probability to the Poisson probability
exp[−µ] µy/y!

If we worked with µ directly, then (ignoring the factorial, which doesn’t involve
this parameter), the likelihood based on an observed count of D is

exp[−µ] µD.

Substituting µ = λY , where Y is C&H’s notation for amount of person-Years
(what we call the denominator) gives

exp[−λY ] (λY )D,

or, ignoring items that do not involve λ, as

exp[−λY ] (λ)D,

so that the log-likelihood is indeed

−λY +D log (λ),

19JH has put this very readable 1907 article “On the Error of Counting with a Haema-
cytometer” under the resources for rates in course EPI634
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5.3.1 Example: Likelihood for parameter of exponentially dis-
tributed random variable, with interval censoring.

The Uganda and Kenya ‘circumcision in the prevention of HIV’ studies are
examples of interval-censored (as well as the usual right-censored) data, since
one cannot know exactly when a person became HIV+, only that it occurred
in the interval between the last negative test and the first positive one.

Before setting up the likelihood for such data, let us consider a simple sta-
tistical model for the data, and let us focus for now on the placebo group.
We will assume that the sero-conversion rate λ is constant over the 2 years,
i.e., that λ(t) = λ over that interval. Up until now, we treated the number
of events in the ‘aggregated-across-subjects’ person time as a Poisson random
variable. Another way to look at this is to consider the inter-event times, (or
the time-to-event times) and their distribution. We know from BIOS601 that
if the event rate is λ, and there is always one unit at risk, then the inter-event
times have an exponential distribution with mean 1/λ. Thus, we can say that
the ‘time-to-event’ for each subject is a realization of an exponential random
variable with mean or expected value 1/λ. If we call this r.v. ‘T ’, then

T ∼ exp(µT = 1/λ),

ST (t) = exp[−λt],

FT (t) = 1− ST (t) = 1− exp[−λt],

fT (t) = F ′T (t) = λ exp[−λt] = (1/µT ) exp[−(1/µT )t].

In the control group in the Uganda trial, 2319 initially HIV- men were tested
at the 6-month, or 0.5year follow-up, and 19 of them were found to be HIV+,
and the remaining 2300 were found to be HIV-.

The likelihood, based just on this first follow-up test is therefore the proba-
bility (as a function of the seroconversion rate λ) of observing this pattern of
results. First we write it as a product of 2319 probabilities:

Likelihood =

i=2319∏
i=1

Pr[obs′d outcome for subject i] =

i=19∏
i=1

Pri

i=2319∏
i=20

Pri

With T denoting the r.v. ‘time to HIV+’, each Pri in the second product is
of the form Pr[T > 0.5 | λ] = exp[−0.5λ], while each Pri in the first product
is of the form Pr[T < 0.5 | λ] = 1− exp[−0.5λ]. The likelihood based on this
first test can thus be simplified to

L1st test = exp[−2300× 0.5λ] × (1− exp[−0.5λ])19

Some 2229 of those HIV- at 6-months were tested at the 12-month, or 1year
follow-up, and 14 of them were found to be HIV+, and the remaining 2215
were found to be HIV-. Thus the likelihood based on this second test can thus
be simplified to

L2nd test = exp[−2215× 0.5λ] × (1− exp[−0.5λ])14

Notice that with this exponential distribution, the fact that these 2229 had
got throught the first interval HIV-free has nothing to do with their (now
conditional) probabilities for the next 6 months. Technically, we call this
the “memoryless” property of the exponential distribution.20 Thus, Pr[T >
t | T > tgiven = Pr[T > t− tgiven], and so, whereas we would normally have
to use the conditional probability {F (1.0)− F (0.6)}/S(0.5), here we can use
the unconditional probability of escaping infection for 6 months. In effect, we
can ‘reset the clock to zero at T=0.5,’ and imagine it was just like back at
T = 0.

Some 980 of those HIV- at 12-months were tested at the 24-month, or 2year
follow-up, and 12 of them were found to be HIV+, and the remaining 968
were found to be HIV-. The likelihood based on this third test can thus be
simplified to

L3rd test = exp[−968× 1.0λ] × (1− exp[−1.0λ])12

Thus the likelihood based on all three tests is

Lall 3 tests = L1st test × L2nd test × L3rd test

ie

L = exp[−(2300× 0.5 + 2215× 0.5 + 968× 1.0)λ]

×
(1− exp[−0.5λ])19 × (1− exp[−0.5λ])14 × (1− exp[−1.0λ])12

Supplementary Exercise 5.1. (i) Maximize L with respect to λ. (ii) What
would happen to L, and to the ease of estimation, if subjects were tested more
frequently, e.g. every month, every week, every day?

20In industrial life-testing, this property is referred to as the ‘used is the same as new’
property. In failure time distributions where the failure is a function of age or duration of
use (e.g. a computer or hard disk), the hazard is — maybe after a certain run-in period – an
increasing function of its age or accumulated hours of work, and so the testers say ‘older is
worse (less ‘reliable’) than newer;’ initially, before those units doomed to early failure have
been weeded out, it may be that ‘newer is worse than older.’ Sadly, most human hazards,
other than being struck by a meteor, are from internal sources to do with our own bodies,
and so while the hazard function or force of mortality decreases until about age 8 – see
Canada lifetables – it is monotonically increasing thereafter.
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5.4 Cum. survival probability as fn. of rate parameter

We saw this in BIOS601 as S(T ) = exp[−
∫ T
0
h(t)dt], or cumulative incidence

as CI0→T = 1− S(T ) = 1− exp[−
∫ T
0
h(t)dt].

We also came up with a ‘heuristic’ (“a usually speculative formulation serving
as a guide in the investigation or solution of a problem”) whereby the integral∫ T
0
h(t)dt can be seen as the expected number of events, µ, if there was always

one unit (person) at risk for the period 0 to T . Thus if an event (failure)
occurred at any point in this interval, the failed unit is immediately replaced
by another of the same profile: e.g., if h(t) referred to computers, we would
replace a computer that failed at time t1 by another of the same age, and if
this failed before T , at time t2 say, we would in turn replace it by another of
age t2, and so on until we got to T . So by the end, we would have observed
the 1-unit system for a total of T units of time, and we might have observed
0, 1, 2, . . . failures (and had to make this many replacements), in order to have
the system in continuous operation for this duration. The expected number
of failures in that period would be the integral of (the area under) the h(t)
curve. We saw in first term that the Poisson distribution has the ‘closed under
addition’ property; in this application, we can think of the total number of
events in (0, T ) as (the limit of) a sum of more and more Poisson random
variables, representing the numbers of events in smaller and smaller intervals
(t, t + dt), with expected numbers of events h(t)dt. In the limit, this sum
of small expectations is nothing more than the overall expected number of
events,

µ =

∫ T

0

h(t)dt

The observed sum is thus the realization of a single Poisson random variable
with mean µ, and so the probability that the initial unit will ‘survive’ the
entire interval is just the probability that there will be no event in the entire
period, i.e.,

S(T ) = Pr(Poisson.RV [µ] = 0) = exp[−µ] = exp[−integral of h(t)].

The other concept that is reinforced by this heuristic, and the computer ex-
ample, is that the computer-days are interchangeable. Imagine we had a large
bank of computers all of the same vintage: we could imagine having a different
one of these computers be the one that ran the system (was ‘on duty’) for the
day, and we could even draw lots for which computer is the one on duty at any
time. Assuming that the ‘on duty’ computer didn’t age any faster than the
ones that were ‘off duty’ that day, we can now see that the probability that a

specific computer would fail before time T is the same as the probability that
a sequence of computer-days – or computer-hours, or computer-minutes (each
one contributed by a possibly different computer) would contain at least one
failure. This interchangeability of (impersonal, indistinguishable, unnamed)
units of the same age, i.e., with the same h(t), is central to the concept of
‘person-clicks’ that C&H use.. it is not the particular person that matters to
the contribution, but the person’s profile – his/her h(t) value.

If the rate is a constant over the period (0, T ), so that the integral is µ =
λ × T = λT, then we get the simple expression for the (cumulative) survival
probability given at the top of page 46, namely S(T ) = exp[−λT ].

This section also discusses the simple approximation to exp[−µ] when µ is
small, namely 1 − µ. In this situation, the cumulative risk (in fact, the word
cumulative is redundant!) can thus be approximated by

Risk = Cumulative Incidence ≈ 1− µ = 1− λT [µ small].

Whether or not the integral µ is small, if λ is constant over (0, T ), then –
apart from random variations –

log{S(t)} = log{exp[−λt]} = −λt,

so that

the plot of − log{S(t)} versus t should be linear in t, with slope λ.

5.5 Rates that vary with time

JH’s comments in section 5.4 discussed both piecewise-linear (and in the limit
a) general smooth form(s) for h(t) or λ(t), and so there is little to add for this
section, other than to make one remark about their use of the term “cumu-
lative failure rate.” JH finds this term too close to “cumulative incidence”,
which is a proportion. C%H’s “cumulative failure rate” is in fact the integral
we discussed above, and so has as its dimension or units the expected number
of events in the period (0, T ) if one unit were always operating, i.e., ‘at risk.’
He would prefer that you use the more common term “integrated hazard”
often denoted by an upper case letter,

H(T ) =

∫ T

0

h(t)dt or Λ(T ) =

∫ T

0

λ(t)dt.

C&H tell us that “it follows that the relationship

log[S(t)] = −Cum. failure rate { log[S(t)] = −H(t) in our notation }
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still holds when the rate varies from one band to the next... and will be used
to calculate S(t).” We have already used the exponentiated version of this
to calculate S(t). But this relationship in the log scale is also used to check
whether an assumed form or model for h(t) fits with the observed data: it
is more difficult to judge fit on the S scale, where S(t) is likely to be quite
curvilinear, than on the H scale, where H(t) may have a simpler form, such
as piecewise linear.

Supplementary Exercise 5.2. For the Uganda HIV data, assume a different
λ for each of the 3 intervals, and estimate each one separately. Do the data
provide evidence against this assumption? Answer by maximizing L under
the larger (3 possibly different λs) and smaller ( all three λs are the same)
models, and computing the likelihood ratio.

5.6 Rates varying continuously in time: Kaplan-Meier
(K-M) and Nelson-Aalen (N-A) estimators

“The assumption that the rate parameter is constant over broad bands of time,
but changes abruptly from one band to the next, is widely used, but an alterna-
tive model, useful when exact times of failure and censoring are known, is to
allow the rate parameter to vary from click to click. In Chapter 4 this
kind of model led to the Kaplan-Meier estimate of the survival curve; when
using rates it leads to the estimate known as the Aalen-Nelson estimate.”

This is a very nice way of putting it. First, it says that the Kaplan-Meier curve
is a limiting case of a probability-based lifetable, with the time bands made
narrower and narrower. In the limit (and the Kaplan-Meier table is sometimes
referred to as the ‘product-limit’ table) one need only be concerned with prod-
ucts of continuation probabilities from the event-containing intervals. It also
explains why the Kaplan-Meier curve is called ‘non-parametric’: by making
the bands narrower and narrower, the curve follows the data exactly.

The Kaplan-Meier estimate can be seen as a product of empirical continu-
ation probabilities, each one governed by the binomial model. We formally

acknowledge this when we use Greenwood’s formula for the SE of Ŝ(t).

The Nelson-Aalen estimate can be seen as a product of model-based continu-
ation probabilities, with each estimated probability calculated from the theo-
retical relation between the (in this case shortterm incidence or) hazard rate

and cumulative incidence, viz. St→t+dt = 1−CIt→t+dt = exp[−
∫ t+dt
t

h(u)du

If an interval t, t+ dt) involves n persons at risk, and d events (deaths), then
the person time is ndt and so the estimate of the incidence is d

n×dt . each one
governed by the binomial model. If d is zero, then the estimate of the incidence

is zero. Thus, the empirical hazard function is a square-wave function,

ĥ(t) =

{
0 if (t, t+ dt) contains d = 0 events,
d

n×dt if (t, t+ dt) contains d > 0 events.

Thus,

ĥ(t)dt =

{
0 if (t, t+ dt) contains d = 0 events,
d
n if (t, t+ dt) contains d > 0 events.

Thus ∫ T

0

ĥ(t)dt =
∑ d

n
,

with the summation over those event-containing narrow bands where t < T .
The persons at risk in these event-containing bands are called risksets.

The EPIB634 site has R code that divides the JUPITER follow-up time into
1-year, then 1-month, then 1-week, then 1-day bands. The resulting h(t)
function becomes more and more erratic, but in doing so – just like the K-M
curve – it conforms exactly to the data.

Just as the K-M curve is based on a product of binomial -based probability
estimates, the N-A curve can be seen as an integral (the limit of a sum) of
Poison-based rate (hazard) estimates: provided that each n is large, the ‘d’
that forms the numerator of the empirical elemental area can be seen as a
realization of a Poisson random variable. Its estimated variance can therefore
be estimated as d, and the variance of d

n as d
n2 . Thus,

V̂ ar

[ ∫ T

0

ĥ(t)dt

]
=
∑ d

n2
.

For the numerators in this variance expression, some textbooks use binomial-
based variances of n× d

n ×
n−d
n instead of the Poisson-based variances of d. If

each n−d is large, as it is in the JUPITER study, then the difference between
the two formulations is miniscule.

Most software packages plot the N-A curve as a step-function, just as they
do the K-M curve. The conf. intervals are first calculated for the estimated
integral, and then for Ŝ(t).

Supplementary Exercise 5.3. Calculate the Nelson-Aalen and Kaplan-
Meier curves, and the SE’s, for the placebo arms of the Uganda and Kenya
circumcision trials, and the JUPITER trial.
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6 Time

6.1 When do we start the clock?

Examples JH has dealt with include the analysis of longevity of

• The Titanic survivors, where the two time scales are (i) age (years elapsed
since birth) and (ii) ‘survivor-time’, the years elapsed since the April 15,
1912 sinking;

• Oscar nominees, where the two time scales are (i) age and (ii) nominee-
time’, the years elapsed since first being nominated for an Oscar;

• Nobel Prize nominees, where the two time scales are (i) age and (ii)
‘nominee-time’, the years elapsed since first being nominated for a Nobel
Prize;

• Jazz musicians, where the two time scales are (i) age and (ii) performer-
time’, the years elapsed since first becoming a jazz musician;

• Popes versus artists;

• Baseball Hall of Famers versus players who were nominated by not in-
ducted;

• Rock Stars who become famous early versus later (or not at all).

For more details on these examples, see bios601/Epidemiology2/

For more on the choice of time scale, Google “Multiple time scales in survival
analysis.” or find the articles that cite the 1979 Applied Statistics article by
Farewell and Cox “A note on multiple time scales in life testing.”

There is also the interesting article The two-way proportional hazards model
by Efron in J. R. Statist. Soc. B (2002) 64, Part 4, pp. 899-909, applied
to “patient histories in a study of heart transplant recipients treated at the
Stanford Medical Center between 1980 and 1996; some 110 of the patients
suffered a serious bacterial infection, their infection times ranging from a few
days after transplantation to nearly 9 years, these being the observed lifetimes
that would usually be featured in a proportional hazards analysis of the infec-
tion process. In this case, however, the investigators’ main interest centred on
calendar date: was the incidence rate of bacterial infections declining over the
course of the study? Incidence is itself a hazard rate, in the simplest situation
the number of new cases per eligible subject per unit time, and it is natural
to answer the question with a hazard rate analysis.”

6.2 Age-specific rates

“To ignore this variation [of incidence and mortality rates with age] runs the
risk that comparisons between groups will be seriously distorted, or confounded,
by differences in age structure.”

It’s good to have a few handy real examples of age-confounding that
are easily understood by non-statisticians. Two immediately come to
mind (i) the overall death rate is higher in Canada than Ethiopia
(ii) the higher death rate among non-smokers in a 20-year follow-up
study of smokers and non-smokers [ Does Smoking Improve Survival?
www.whfreeman.com/statistics/ips/eesee4/eesees4.htm; this is also de-
scribed in chapter 1 of Rothman 2002, with finer age-categories]

“For longer studies it will be necessary to take account of changing age during
the study, and to treat age properly - as a time scale. This scale is then divided
into bands and a separate estimate of the rate is made within each age band
as described in Chapter 5. In this latter analysis, a subject can pass through
several age bands during the course of the study.”

Not only can a subject pass through several age bands but she can also change
from one ‘exposure’ category to another – as in the Oscars exercise.

6.3 The expected number of failures

“One reason for subdividing the total follow-up experience of a cohort into
age bands is to determine whether the observed number of failures is more or
less than we might have expected. Since mortality and incidence rates usually
increase quite sharply with age, the distribution of person years observation
between age bands is an extremely important determinant of the number of
events we would expect to observe.”

It is not clear what is the basis for the “expectation” i.e., whether it is a ‘what
if’ comparison against external rates, or an internal one against the rates in
a comparison group constructed and followed by the investigators. One can
think of the ‘expected number’ of 16.77 cases in exercise 6.3 as the number one
would expect in a scaled-down version of England and Wales (E&W), scaled
down to the same sample size (974 women) followed for the same cell-specific
numbers of person years as those shown in Table 6.4. In other words, it as as
thought one had

974 treated by HRT 974 from E&W, same age & follow-up, untreated
15 cases 16.7 cases

Of course, the fact that the 16.7 is based on observed rates in the whole of
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E&W means that it is not subject to the same degree of random variation as
is the number of cases in the actual cohort. With this solid a basis for it, the
expected number is usually taken to be a constant, so only one standard error
(SE) is involved in the 15 vs. 16.7 comparison – the one associated with the
15.

“The expected number of cases, as calculated above, is not quite the same as
the expected number in the usual statistical sense. The latter cannot depend
upon the outcome of the study, but the former does.”

C&H are saying that the numbers of Woman-years in the second column of
Table 6.4 are random variables: they would not have been known ahead of
time. For some 15 women – the 15 being a random variable – the follow-up
was terminated by the event of interest. Likewise, any terminations for other
reasons might also be unpredictable ahead of time. However, if these are not
related to the person’s probability of a future event, they don’t have a great
influence on the sampling behaviour of the estimators of interest.

6.4 Lexis diagrams

en.wikipedia.org/wiki/ Wilhelm Lexis (1837-1914) was an eminent Ger-
man statistician, economist, and social scientist and a founder of the interdis-
ciplinary study of insurance.

The “Lexis diagram”, in which lifelines are displayed as 45-degree lines on a
grid with age on the vertical axis and calendar year on the horizontal axis, is
very helpful in epidemiology, and in survival analysis with 2 time scales.

The Epi package for R has several functions that make it easy to convert the
data of the type shown in Table 6.2 into the person-year segments shown
Figure 6.3. Previously, this was a very laborious computing process.

Once we have the tabulated person years and cases in each Lexis rectangle
(the cells don’t have to be square), we can calculate the expected number of
cases if a specified set of external rates applied, or make internal rectangle-
by-rectangle comparisons, and thus a summary of these comparisons. We can
also use them to fit (Poisson) regression models for rates.

Here is the R code, and some of its output, for the data in C&H Table 6.2.

library(Epi)

id = c(1,2,3,4);
yr.birth = c(1904,1924,1914,1920);
yr.entry = c(1943,1948,1945,1948);
yr.exit = c(1952,1955,1961,1956);
fail = c(0, 1, 0, 0) );

ds=data.frame(id, yr.birth, yr.entry, yr.exit, fail); ds

id yr.birth yr.entry yr.exit fail
1 1 1904 1943 1952 0
2 2 1924 1948 1955 1
3 3 1914 1945 1961 0
4 4 1920 1948 1956 0

# Define as Lexis object with timescales calendar time and age

Lexis <- Lexis( entry = list( calendar.year = yr.entry ),
exit = list( calendar.year = yr.exit, age = yr.exit - yr.birth ),

exit.status = fail,
data = ds )

Lexis

calendar.year age lex.dur lex.Cst lex.Xst lex.id id yr.birth yr.entry yr.exit fail

1 1943 39 9 0 0 1 1 1904 1943 1952 0
2 1948 24 7 0 1 2 2 1924 1948 1955 1
3 1945 31 16 0 0 3 3 1914 1945 1961 0
4 1948 28 8 0 0 4 4 1920 1948 1956 0

# Default plot of follow-up

plot(Lexis)

# With a grid and deaths as endpoints

plot(Lexis, grid=0:5*5, col="black" )
points(Lexis, pch=c(NA,16)[Lexis$lex.Xst+1] )

# With a lot of bells and whistles: [ *** SEE PLOT NEXT PAGE *** ]

plot(Lexis, grid=0:20*5, col="black", xaxs="i", yaxs="i",
xlim=c(1940,1965), ylim=c(20,50), lwd=3, las=1 )

points(Lexis, pch=c(NA,16)[Lexis$lex.Xst+1], col="red", cex=1.5 )

# Split time along two time-axes

L2 = splitLexis(Lexis,breaks=seq(1940,1965,5),
time.scale="calendar.year")

L2 = splitLexis(L2, breaks=seq(20,50,5), time.scale="age" )
str( L2 )
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L2

lex.id calendar.year age lex.dur lex.Cst lex.Xst id yr.birth yr.entry yr.exit fail
1 1 1943 39 1 0 0 1 1904 1943 1952 0
2 1 1944 40 1 0 0 1 1904 1943 1952 0
3 1 1945 41 4 0 0 1 1904 1943 1952 0
4 1 1949 45 1 0 0 1 1904 1943 1952 0
5 1 1950 46 2 0 0 1 1904 1943 1952 0
6 2 1948 24 1 0 0 2 1924 1948 1955 1
7 2 1949 25 1 0 0 2 1924 1948 1955 1
8 2 1950 26 4 0 0 2 1924 1948 1955 1
9 2 1954 30 1 0 1 2 1924 1948 1955 1
10 3 1945 31 4 0 0 3 1914 1945 1961 0
11 3 1949 35 1 0 0 3 1914 1945 1961 0
12 3 1950 36 4 0 0 3 1914 1945 1961 0
13 3 1954 40 1 0 0 3 1914 1945 1961 0
14 3 1955 41 4 0 0 3 1914 1945 1961 0
15 3 1959 45 1 0 0 3 1914 1945 1961 0
16 3 1960 46 1 0 0 3 1914 1945 1961 0
17 4 1948 28 2 0 0 4 1920 1948 1956 0
18 4 1950 30 5 0 0 4 1920 1948 1956 0
19 4 1955 35 1 0 0 4 1920 1948 1956 0

# Tabulate the cases and the person-years

summary( L2 )

tapply( status(L2,"exit")==1, list( timeBand(L2,"age","left"),

timeBand(L2,"calendar.year","left") ), sum )

1940 1945 1950 1955 1960

20 NA 0 NA NA NA

25 NA 0 0 NA NA

30 NA 0 1 NA NA

35 0 0 0 0 NA

40 0 0 0 0 NA

45 NA 0 0 0 0

tapply( dur(L2), list( timeBand(L2,"age","left"),

timeBand(L2,"calendar.year","left") ), sum )

1940 1945 1950 1955 1960

20 NA 1 NA NA NA

25 NA 3 4 NA NA

30 NA 4 6 NA NA

35 1 1 4 1 NA

40 1 4 1 4 NA

45 NA 1 2 1 1

> summary( L2 )

Transitions:

To

From 0 1 Records: Events: Risk time:

0 18 1 19 1 40

Rates:

To

From 0 1 Total

0 0 0.02 0.02

1940 1945 1950 1955 1960 1965

20

25

30

35

40

45

50

calendar.year

ag
e

Figure 4: Lexis Diagram, from Epi package in R
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Supplementary Exercise 6.1. Death rates in those who survived the
sinking of the Titanic vs. in the sex-and age-matched US general
population, together with some other investigations

Under ‘For Person-Years Analyses’ in Resources for ‘Fitting Models to
Grouped Data [B & D vol II, ch4]’ in the BIOS602 website you will find
(a) the Titanic longevity data set (b) USA death rates (within 5 x 5 rectan-
gles, called ‘quinquinquennia’) from the Berkeley Mortality Database.21 You
will also find some R code that uses the Epi package to create – for each pas-
senger – the durations in and exit status from each quinquinquennium, then
aggregates these over all the persons traversing each quinquinquennium, etc.

1. Convert each survivor’s record into the experience in the (age, period)
quinquinquennia traversed, i.e the number of years spent in the rectangle,
and the status (e.g., d = 0 if alive, 1 if dead) at the end of these years.
Rather than program the calculations from scratch, two possibilities are
http://epi.klinikum.uni-muenster.de/pamcomp/pamcomp.html

– which some people used last year – and the R ‘Epi’ package
http://staff.pubhealth.ku.dk/∼bxc/Epi/ The key functions in the
latter are Lexis (and associated plotting functions) and splitLexis,
which, when applied twice, calculates the time spent, and exit status
from each quinquinquennium. The ‘bogus example’ in the documen-
tation of the splitLexis function illustrates these, while the example
on the notes for C&H chapter 6 shows the application to the 4-person
cohort used in that chapter.

2. How much higher/lower is the set of age-specific death rates for male
Titanic survivors than that for the general US population? for fe-
male survivors? Answer in two ways: first, calculate sex-specific ob-
served/expected ratios, where the numerator is the total number of deaths
observed in the sex-specific cohort, and the denominator is the sum of the
expected numbers of deaths in these cells, using the USA age-sex-period
death rates; second, calculate sex-specific Mantel-Haenszel summary in-
cidence ratios (Rothman terminology) or incidence density ratios (Mietti-
nen terminology) or mortality rate ratios (everyone’s terminology), using
age and period as ‘strata.’22 Assume that each of the USA death rates is

21.] This site, http://www.demog.berkeley.edu/∼bmd/index.html, contains historical
lifetable and death rate data for the USA and other countries.

22As is illustrated in equation 8-5 in Rothman 2002, the formula is∑
strata(no. of cases, index category)× (py, ref. category)/(py in stratum)∑
strata(no. of cases, ref. category)× (py, index category)/(py in stratum)

based on a denominator of one million person years.23 Assume that the
death rates after 1995 are the same as those in 1990-95.

3. ‘On average,’ 24, for the age-span 40-90 in the period 1990-1995, how
much higher are the USA age-specific male death rates in males than
females? Answer by plotting the log of the male:female death rate ratio
vs age, (or the two separate sets of log-death-rates on the same graph),
and taking some ‘typical’ value for the ratio. Are you comfortable giving
a single ratio? i.e., is the mortality-rate-ratio (M:F) reasonably constant
over that age-span?

4. The previous question refers to cross-sectional rates, i.e., those in a spec-
ified period.25 On average, over the age-span 40-90 in the 1900 birth-
cohort, how much higher are the USA age-specific death rates in males
than females? Answer by plotting the log of the male:female death rate
ratio vs age, (or the two separate sets of log-death-rates on the same
graph), and taking some ‘typical’ value for the ratio. Are you comfort-
able giving a single ratio? i.e., is the mortality-rate-ratio (M:F) reasonably
constant over that age-span?

5. For the age-span 40-90, in a single number describe how much age-and
specific death rates have fallen over the 20th century (the changes may be
more subtle that this, so your answer will necessarily be a simplification).

6. For the Titanic survivors, was there a gradient in mortality rates across
the 3 passenger classes?

Supplementary Exercise 6.2. Mortality of performers while in the
‘still hoping to win’ vs in the ‘already a winner’ state

1. Divide the performer-years into those spent as Oscar nominees and as
Oscar winners and then subdivide these into quinquinquennia.

2. Compare the death rates in the performer-years spent as nominees versus
those spent as winners. Do so using both ‘adjusted’ expected numbers
and purely-internal comparisons.

23If the ratio of the amount of experience in the ref. category to that in the index category
goes to infinity, the M-H summary ratio converges to

∑
strataO/

∑
strata E = O/E.

24Even if the average is not representative.
25Cross-sectional rates are what are used to make ‘current’ or ‘period’ lifetables, by far

the more common type of lifetable.
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